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AI~TRACT 
It is shown that all subfair casino functions are superadditive on the unit 
interval. 

As the main step in showing that bold play in a primitive casino is optimal, 
and, consequently, that the utility U of the bold strategies in a primitive casino 
is a casino function, it was shown in [1, Chap. 6] that for a l l f a n d  g in the closed 
unit interval, U satisfies: 

(1) 

and 

(2) 

It turns 

U(f + g) ~_ U (f) + U(g) i f f + g < l ,  

U ( f + g - 1 ) _ ~ V ( f ) + U ( g ) - I  if f + g _ - l .  

out to be very simple to prove 

TI-mOl~M 1. (**) Every subfair casino function U satisfies (1) and (2). 

Proof.*** We first show thatlU satisfies (1). As was observed in [1, Chap. 4, 
Sees. 2 and 3], 

U(f g) ~_ U(f)U(g), (3) 

and 

(4) U(f + g(1 - f ) )  ~ U( f )  + U(g)(1 - U(f)), 

for all f and g in the unit interval 
The only discontinuous subfair casino function is 0 for 0 <- f  < 1 and is 1 at 

f = 1, as was shown in [1, Chap. 4, Sec. 3]. Since this function plainly satisfies 
(1) and (2), only continuous U need to be considered. Let 
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(5) S(f, g) = U(f)  + U(g) - U(f  + g) 

on the triangle where f + g __< 1. 
If  S were ever positive, there is a least f such that S attains its maximum for 

that f and some g. That f cannot be 0, nor can a corresponding g be 1. Apply S 

to ( f ' ,  g') where f '  = f  g and g' = f +  g - f  g. 

S ( f ' , g ' )  = C( f ' )  + V(g') - U(f '  + g') 

= U(fg) + U(f+ g - f g )  - U ( f +  g) 

(6) > U(f)U(g) + U(f)  + U(g) - U(f)U(g) - U( f  + g) 

= U ( f )  + U(g) - U ( f  + g) 

= S(f,g),  

where the inequality is an application of (3) and (4). But (6) is a contradiction, 
since f '  < f .  So (1) holds. 

A very similar proof would show that (2) holds, but it seems more interesting 
to demonstrate (2) by means of a digression that brings out the intimate relation 
of (2) to (1). 

To each function V of two real variables associate its dual V*, thus. 

(7) V*(f,g) = 1 - V(I - f ,  1 - g ) .  

Let ~" be the set of all V such that: (i) V(f, g) is increasing in f and in g; and 
(ii) for every subfair casino function U, 

(8) U(V(f, g)) >= V(U(f),  U(g)) 

whenever f,  g and V(f,g) are in the unit interval. 

LEMMA 1. V e ~  if and only if  V* e ~v'. 

Proof of Lemma. 1: Introduce U* as in [1, Chap. 4, Sec. 6], namely, U*(z) 
= 1 - U-X(1 - z) for 0 < z < 1. Let f ,  g ,x  and y be related thus. U(f)  = 1 - x, 
U(g) = 1 - y, or, equivalently, U*(x) = 1 - f ,  U*(y) = 1 - g. Let V ~  and 
suppose first that V(f, g) and V*(x y) are in the unit interval. Then notice that (8) 
holds if and only if 

(9) U*(V*(x,y)) > V*(U*(x), U*(y)), 

even if V is not monotone. Therefore, it may be supposed that x, y, and V*(x, y) 
are in the unit interval, but V(f, g) is not. Verify that because V*(x, y) is in the 
unit interval, so is V(U(f),  U(g)). So by monotoneity of V, V(f,g) cannot be less 
than 0, and therefore must exceed 1. So V*(U*(x), U*(y))= 1 - V ( f , g ) < 0  
< U*(V*(x,y)). This completes the proof of Lemma 1. 

Since (1) has been shown to hold for all subfair casino functions, the function 
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V(f ,g)  = f +  g is in ~v'. In view of Lemma 1, so is the function f + g - 1, that is, 
(2) also holds for all subfair casino functions U. The proof of Theorem 1 is now 
complete. 

As is easily seen, the proofs of  Theorem 1 and Lemma 1 apply not only to casino 
functions U but to all bounded solutions U to (3) and (4) omitting those U for 
which U(f )  - 1 for 0 < f <  1. 

Inequalities (3) and (4) for casino functions U have intuitive interpretations 
that make them apriori plausible and, therefore, natural to conjecture. It would 
be nice to find such interpretations for (1) and (2). 
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